Python API Documentation¶
ReferenceQC
¶
Class for performing quality control of sequencing data against a reference genome.
This class computes various metrics to assess the quality and characteristics of a sequencing sample, including coverage indices and abundance ratios, by comparing sample k-mer signatures with a reference genome and an optional amplicon signature.
Parameters
sample_sig
(SnipeSig
): The sample k-mer signature (must be of typeSigType.SAMPLE
).reference_sig
(SnipeSig
): The reference genome k-mer signature (must be of typeSigType.GENOME
).amplicon_sig
(Optional[SnipeSig]
): The amplicon k-mer signature (must be of typeSigType.AMPLICON
), if applicable.enable_logging
(bool
): Flag to enable detailed logging.
Attributes
sample_sig
(SnipeSig
): The sample signature.reference_sig
(SnipeSig
): The reference genome signature.amplicon_sig
(Optional[SnipeSig]
): The amplicon signature.sample_stats
(Dict[str, Any]
): Statistics of the sample signature.genome_stats
(Dict[str, Any]
): Calculated genome-related statistics.amplicon_stats
(Dict[str, Any]
): Calculated amplicon-related statistics (ifamplicon_sig
is provided).advanced_stats
(Dict[str, Any]
): Calculated advanced statistics (optional).predicted_assay_type
(str
): Predicted assay type based on metrics.
Calculated Metrics
The class calculates the following metrics:
-
Total unique k-mers
- Description: Number of unique k-mers in the sample signature.
- Calculation: $$ \text{Total unique k-mers} = \left| \text{Sample k-mer set} \right| $$
-
k-mer total abundance
- Description: Sum of abundances of all k-mers in the sample signature.
- Calculation: $$ \text{k-mer total abundance} = \sum_{k \in \text{Sample k-mer set}} \text{abundance}(k) $$
-
k-mer mean abundance
- Description: Average abundance of k-mers in the sample signature.
- Calculation: $$ \text{k-mer mean abundance} = \frac{\text{k-mer total abundance}}{\text{Total unique k-mers}} $$
-
k-mer median abundance
- Description: Median abundance of k-mers in the sample signature.
- Calculation: Median of abundances in the sample k-mers.
-
Number of singletons
- Description: Number of k-mers with an abundance of 1 in the sample signature.
- Calculation: $$ \text{Number of singletons} = \left| { k \in \text{Sample k-mer set} \mid \text{abundance}(k) = 1 } \right| $$
-
Genomic unique k-mers
- Description: Number of k-mers shared between the sample and the reference genome.
- Calculation: $$ \text{Genomic unique k-mers} = \left| \text{Sample k-mer set} \cap \text{Reference genome k-mer set} \right| $$
-
Genome coverage index
- Description: Proportion of the reference genome's k-mers that are present in the sample.
- Calculation: $$ \text{Genome coverage index} = \frac{\text{Genomic unique k-mers}}{\left| \text{Reference genome k-mer set} \right|} $$
-
Genomic k-mers total abundance
- Description: Sum of abundances for k-mers shared with the reference genome.
- Calculation: $$ \text{Genomic k-mers total abundance} = \sum_{k \in \text{Sample k-mer set} \cap \text{Reference genome k-mer set}} \text{abundance}(k) $$
-
Genomic k-mers mean abundance
- Description: Average abundance of k-mers shared with the reference genome.
- Calculation: $$ \text{Genomic k-mers mean abundance} = \frac{\text{Genomic k-mers total abundance}}{\text{Genomic unique k-mers}} $$
-
Mapping index
- Description: Proportion of the sample's total k-mer abundance that maps to the reference genome.
- Calculation: $$ \text{Mapping index} = \frac{\text{Genomic k-mers total abundance}}{\text{k-mer total abundance}} $$
If amplicon_sig
is provided, additional metrics are calculated:
-
Amplicon unique k-mers
- Description: Number of k-mers shared between the sample and the amplicon.
- Calculation: $$ \text{Amplicon unique k-mers} = \left| \text{Sample k-mer set} \cap \text{Amplicon k-mer set} \right| $$
-
Amplicon coverage index
- Description: Proportion of the amplicon's k-mers that are present in the sample.
- Calculation: $$ \text{Amplicon coverage index} = \frac{\text{Amplicon unique k-mers}}{\left| \text{Amplicon k-mer set} \right|} $$
-
Amplicon k-mers total abundance
- Description: Sum of abundances for k-mers shared with the amplicon.
- Calculation: $$ \text{Amplicon k-mers total abundance} = \sum_{k \in \text{Sample k-mer set} \cap \text{Amplicon k-mer set}} \text{abundance}(k) $$
-
Amplicon k-mers mean abundance
- Description: Average abundance of k-mers shared with the amplicon.
- Calculation: $$ \text{Amplicon k-mers mean abundance} = \frac{\text{Amplicon k-mers total abundance}}{\text{Amplicon unique k-mers}} $$
-
Relative total abundance
- Description: Ratio of the amplicon k-mers total abundance to the genomic k-mers total abundance.
- Calculation: $$ \text{Relative total abundance} = \frac{\text{Amplicon k-mers total abundance}}{\text{Genomic k-mers total abundance}} $$
-
Relative coverage
- Description: Ratio of the amplicon coverage index to the genome coverage index.
- Calculation: $$ \text{Relative coverage} = \frac{\text{Amplicon coverage index}}{\text{Genome coverage index}} $$
-
Predicted Assay Type
- Description: Predicted assay type based on the
Relative total abundance
. - Calculation:
- If \(\text{Relative total abundance} \leq 0.0809\), then WGS (Whole Genome Sequencing).
- If \(\text{Relative total abundance} \geq 0.1188\), then WXS (Whole Exome Sequencing).
- If between these values, assign based on the closest threshold.
- Description: Predicted assay type based on the
Advanced Metrics (optional, calculated if include_advanced
is True
):
-
Median-trimmed unique k-mers
- Description: Number of unique k-mers in the sample after removing k-mers with abundance below the median.
- Calculation:
- Remove k-mers where \(\text{abundance}(k) < \text{Median abundance}\).
- Count the remaining k-mers.
-
Median-trimmed total abundance
- Description: Sum of abundances after median trimming.
- Calculation: $$ \text{Median-trimmed total abundance} = \sum_{k \in \text{Median-trimmed Sample k-mer set}} \text{abundance}(k) $$
-
Median-trimmed mean abundance
- Description: Average abundance after median trimming.
- Calculation: $$ \text{Median-trimmed mean abundance} = \frac{\text{Median-trimmed total abundance}}{\text{Median-trimmed unique k-mers}} $$
-
Median-trimmed median abundance
- Description: Median abundance after median trimming.
- Calculation: Median of abundances in the median-trimmed sample.
-
Median-trimmed Genomic unique k-mers
- Description: Number of genomic k-mers in the median-trimmed sample.
- Calculation: $$ \text{Median-trimmed Genomic unique k-mers} = \left| \text{Median-trimmed Sample k-mer set} \cap \text{Reference genome k-mer set} \right| $$
-
Median-trimmed Genome coverage index
- Description: Genome coverage index after median trimming.
- Calculation: $$ \text{Median-trimmed Genome coverage index} = \frac{\text{Median-trimmed Genomic unique k-mers}}{\left| \text{Reference genome k-mer set} \right|} $$
-
Median-trimmed Amplicon unique k-mers (if
amplicon_sig
is provided)- Description: Number of amplicon k-mers in the median-trimmed sample.
- Calculation: $$ \text{Median-trimmed Amplicon unique k-mers} = \left| \text{Median-trimmed Sample k-mer set} \cap \text{Amplicon k-mer set} \right| $$
-
Median-trimmed Amplicon coverage index
- Description: Amplicon coverage index after median trimming.
- Calculation: $$ \text{Median-trimmed Amplicon coverage index} = \frac{\text{Median-trimmed Amplicon unique k-mers}}{\left| \text{Amplicon k-mer set} \right|} $$
-
Median-trimmed relative coverage
- Description: Relative coverage after median trimming.
- Calculation: $$ \text{Median-trimmed relative coverage} = \frac{\text{Median-trimmed Amplicon coverage index}}{\text{Median-trimmed Genome coverage index}} $$
-
Median-trimmed relative mean abundance
- Description: Ratio of median-trimmed amplicon mean abundance to median-trimmed genomic mean abundance.
- Calculation: $$ \text{Median-trimmed relative mean abundance} = \frac{\text{Median-trimmed Amplicon mean abundance}}{\text{Median-trimmed Genomic mean abundance}} $$
Usage Example
qc = ReferenceQC(
sample_sig=sample_signature,
reference_sig=reference_signature,
amplicon_sig=amplicon_signature,
enable_logging=True
)
stats = qc.get_aggregated_stats(include_advanced=True)
Source code in src/snipe/api/reference_QC.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 |
|
calculate_chromosome_metrics(chr_to_sig)
¶
Calculate the coefficient of variation (CV) of mean abundances across autosomal chromosomes.
This method computes the CV to assess the variability of mean abundances among autosomal chromosomes, excluding any sex chromosomes.
Mathematical Explanation:
The Coefficient of Variation (CV) is defined as:
Where: - \( \sigma \) is the standard deviation of the mean abundances across autosomal chromosomes. - \( \mu \) is the mean of the mean abundances across autosomal chromosomes.
Parameters:
chr_to_sig
(Dict[str, SnipeSig]
):
A dictionary mapping chromosome names (e.g.,'autosomal-1'
,'autosomal-2'
,'sex-x'
,'sex-y'
) to their correspondingSnipeSig
instances. EachSnipeSig
should represent the k-mer signature of a specific chromosome.
Returns:
Dict[str, Any]
:
A dictionary containing the computed metrics:"Autosomal_CV"
(float
):
The coefficient of variation of mean abundances across autosomal chromosomes.
Raises:
ValueError
:
Ifchr_to_sig
is empty or if there is an inconsistency in the signatures' parameters.
Usage Example:
# Assume `chr_signatures` is a dictionary of chromosome-specific SnipeSig instances
chr_signatures = {
"1": sig_chr1,
"2": sig_chr2,
"X": sig_chrX,
"Y": sig_chrY
}
# Calculate chromosome metrics
metrics = qc.calculate_chromosome_metrics(chr_to_sig=chr_signatures)
print(metrics)
# Output:
# {'Autosomal_CV': 0.15}
Notes:
-
Exclusion of Sex Chromosomes:
Chromosomes with names containing the substring"sex"
(e.g.,'sex-y'
,'sex-x'
) are excluded from the CV calculation to focus solely on autosomal chromosomes. -
Mean Abundance Calculation:
The mean abundance for each chromosome is calculated by intersecting the sample signature with the chromosome-specific signature and averaging the abundances of the shared k-mers.
Source code in src/snipe/api/reference_QC.py
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 |
|
calculate_coverage_vs_depth(n=30)
¶
Calculate cumulative coverage index vs cumulative sequencing depth.
This method simulates incremental sequencing by splitting the sample signature into n
parts and
calculating the cumulative coverage index at each step. It helps in understanding how coverage
improves with increased sequencing depth.
Mathematical Explanation:
For each cumulative part \( i \) (where \( 1 \leq i \leq n \)):
-
Cumulative Sequencing Depth (\( D_i \)): $$ D_i = \sum_{j=1}^{i} a_j $$ Where \( a_j \) is the total abundance of the \( j^{th} \) part.
-
Cumulative Coverage Index (\( C_i \)): $$ C_i = \frac{\text{Number of genomic unique k-mers in first } i \text{ parts}}{\left| \text{Reference genome k-mer set} \right|} $$
Parameters:
n
(int
): Number of parts to split the signature into.
Returns:
List[Dict[str, Any]]
:
List of dictionaries containing:"cumulative_parts"
(int
): Number of parts included."cumulative_total_abundance"
(int
): Total sequencing depth up to this part."cumulative_coverage_index"
(float
): Coverage index up to this part.
Usage Example:
coverage_depth_data = qc.calculate_coverage_vs_depth(n=10)
for data in coverage_depth_data:
print(data)
Source code in src/snipe/api/reference_QC.py
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
|
calculate_sex_chrs_metrics(genome_and_chr_to_sig)
¶
Calculate sex chromosome-related metrics based on genome and chromosome-specific signatures.
This method processes a collection of genome and chromosome-specific SnipeSig
instances to compute
metrics such as the X-Ploidy score and Y-Coverage. It ensures that each chromosome signature contains
only unique hashes that do not overlap with hashes from other chromosomes or the autosomal genome.
The method excludes sex chromosomes (e.g., Y chromosome) from the autosomal genome signature to
accurately assess sex chromosome metrics.
Mathematical Explanation:
- X-Ploidy Score:
The X-Ploidy score is calculated using the formula:
$$ \text{X-Ploidy} = \left(\frac{\mu_X}{\mu_{\text{autosomal}}}\right) \times \left(\frac{N_{\text{autosomal}}}{N_X}\right) $$
Where: - \( \mu_X \) is the mean abundance of X chromosome-specific k-mers in the sample. - \( \mu_{\text{autosomal}} \) is the mean abundance of autosomal k-mers in the sample. - \( N_{\text{autosomal}} \) is the number of autosomal k-mers in the reference genome. - \( N_X \) is the number of X chromosome-specific k-mers in the reference genome.
- Y-Coverage:
The Y-Coverage is calculated using the formula:
$$ \text{Y-Coverage} = \frac{\left(\frac{N_Y{\text{sample}}}{N_Y}\right)}{\left(\frac{N_{\text{autosomal}} $$}}}{N_{\text{autosomal}}}\right)
Where: - \( N_Y^{\text{sample}} \) is the number of Y chromosome-specific k-mers in the sample. - \( N_Y \) is the number of Y chromosome-specific k-mers in the reference genome. - \( N_{\text{autosomal}}^{\text{sample}} \) is the number of autosomal k-mers in the sample. - \( N_{\text{autosomal}} \) is the number of autosomal k-mers in the reference genome.
Parameters:
- `genome_and_chr_to_sig` (`Dict[str, SnipeSig]`):
A dictionary mapping signature names to their corresponding `SnipeSig` instances. This should include
the autosomal genome signature (with a name ending in `'-snipegenome'`) and chromosome-specific
signatures (e.g., `'sex-x'`, `'sex-y'`, `'autosome-1'`, `'autosome-2'`, etc.).
Returns:
- `Dict[str, Any]`:
A dictionary containing the calculated sex-related metrics:
- `"X-Ploidy score"` (`float`):
The ploidy score of the X chromosome, reflecting the ratio of X chromosome k-mer abundance
to autosomal k-mer abundance, adjusted by genome and X chromosome sizes.
- `"Y-Coverage"` (`float`, optional):
The coverage of Y chromosome-specific k-mers in the sample relative to autosomal coverage.
This key is present only if a Y chromosome signature is provided.
Raises:
- `ValueError`:
- If the `'sex-x'` chromosome signature is not found in `genome_and_chr_to_sig`.
- If the autosomal genome signature is not found or improperly labeled.
Usage Example:
# Assume `genome_and_chr_signatures` is a dictionary of genome and chromosome-specific SnipeSig instances
genome_and_chr_signatures = {
"autosomal-snipegenome": sig_autosomal_genome,
"1": sig_chr1,
"2": sig_chr2,
"sex-x": sig_sex_x,
"sex-y": sig_sex_y
}
# Calculate sex chromosome metrics
metrics = qc.calculate_sex_chrs_metrics(genome_and_chr_to_sig=genome_and_chr_signatures)
print(metrics)
# Output Example:
# {
# "X-Ploidy score": 2.6667,
# "Y-Coverage": 0.0
# }
Notes:
- **Signature Naming Convention**:
The autosomal genome signature must have a name ending with `'-snipegenome'`. Chromosome-specific
signatures should be named accordingly (e.g., `'sex-x'`, `'sex-y'`, `'autosomal-1'`, `'autosomal-2'`, etc.).
- **Exclusion of Sex Chromosomes from Autosomal Genome**:
The Y chromosome signature (`'sex-y'`) is subtracted from the autosomal genome signature to ensure
that Y chromosome k-mers are not counted towards autosomal metrics.
- **Robustness**:
The method includes comprehensive logging for debugging purposes, tracking each major step and
any exclusions made during processing.
Source code in src/snipe/api/reference_QC.py
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 |
|
distribute_kmers_random(original_dict, n)
staticmethod
¶
Distribute the k-mers randomly into n
parts based on their abundances.
This helper method performs the actual distribution of k-mers using a multinomial distribution.
Mathematical Explanation:
Given a k-mer with hash \( h \) and abundance \( a_h \), the distribution of its abundance across \( n \) parts is modeled as:
Where \( p_i = \frac{1}{n} \) for all \( i \).
Parameters:
original_dict
(Dict[int, int]
):
Dictionary mapping k-mer hashes to their abundances.n
(int
): Number of parts to split into.
Returns:
List[Dict[int, int]]
:
List of dictionaries, each mapping k-mer hashes to their abundances in that part.
Usage Example:
Source code in src/snipe/api/reference_QC.py
get_aggregated_stats(include_advanced=False)
¶
Retrieve aggregated statistics from the quality control analysis.
Parameters
include_advanced (bool)
:
If set toTrue
, includes advanced metrics in the aggregated statistics.
Returns
Dict[str, Any]
:
A dictionary containing the aggregated statistics, which may include:- Sample statistics
- Genome statistics
- Amplicon statistics (if provided)
- Predicted assay type
- Advanced statistics (if
include_advanced
isTrue
)
Source code in src/snipe/api/reference_QC.py
load_genome_sig_to_dict(*, zip_file_path, **kwargs)
¶
Load a genome signature into a dictionary of SnipeSig instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
zip_file_path
|
str
|
Path to the zip file containing the genome signatures. |
required |
**kwargs
|
Additional keyword arguments to pass to the SnipeSig constructor. |
{}
|
Returns:
Type | Description |
---|---|
Dict[str, SnipeSig]
|
Dict[str, SnipeSig]: A dictionary mapping genome names to SnipeSig instances. |
Source code in src/snipe/api/reference_QC.py
nonref_consume_from_vars(*, vars, vars_order, **kwargs)
¶
Consume and analyze non-reference k-mers from provided variable signatures.
This method processes non-reference k-mers in the sample signature by intersecting them with a set of
variable-specific SnipeSig
instances. It calculates coverage and total abundance metrics for each
variable in a specified order, ensuring that each non-reference k-mer is accounted for without overlap
between variables. The method updates internal statistics that reflect the distribution of non-reference
k-mers across the provided variables.
Process Overview:
- Validation:
- Verifies that all variable names specified in
vars_order
are present in thevars
dictionary. -
Raises a
ValueError
if any variable invars_order
is missing fromvars
. -
Non-Reference K-mer Extraction:
- Computes the set of non-reference non-singleton k-mers by subtracting the reference signature from the sample signature.
-
If no non-reference k-mers are found, the method logs a warning and returns an empty dictionary.
-
Variable-wise Consumption:
- Iterates over each variable name in
vars_order
. -
For each variable:
- Intersects the remaining non-reference k-mers with the variable-specific signature.
- Calculates the total abundance and coverage index for the intersected k-mers.
- Updates the
vars_nonref_stats
dictionary with the computed metrics. - Removes the consumed k-mers from the remaining non-reference set to prevent overlap.
-
Final State Logging:
- Logs the final size and total abundance of the remaining non-reference k-mers after consumption.
Parameters:
- `vars` (`Dict[str, SnipeSig]`):
A dictionary mapping variable names to their corresponding `SnipeSig` instances. Each `SnipeSig`
represents a set of k-mers associated with a specific non-reference category or variable.
- `vars_order` (`List[str]`):
A list specifying the order in which variables should be processed. The order determines the priority
of consumption, ensuring that earlier variables in the list have their k-mers accounted for before
later ones.
- `**kwargs`:
Additional keyword arguments. Reserved for future extensions and should not be used in the current context.
Returns:
- `Dict[str, float]`:
A dictionary containing statistics for each variable name in `vars_order`,
- `"non-genomic total k-mer abundance"` (`float`):
The sum of abundances of non-reference k-mers associated with the variable.
- `"non-genomic coverage index"` (`float`):
The ratio of unique non-reference k-mers associated with the variable to the total number
of non-reference k-mers in the sample before consumption.
Example Output:
```python
{
"variable_A non-genomic total k-mer abundance": 1500.0,
"variable_A non-genomic coverage index": 0.20
"variable_B non-genomic total k-mer abundance": 3500.0,
"variable_B non-genomic coverage index": 0.70
"non-var non-genomic total k-mer abundance": 0.10,
"non-var non-genomic coverage index": 218
}
```
Raises:
- `ValueError`:
- If any variable specified in `vars_order` is not present in the `vars` dictionary.
- This ensures that all variables intended for consumption are available for processing.
Usage Example:
# Assume `variables_signatures` is a dictionary of variable-specific SnipeSig instances
variables_signatures = {
"GTDB": sig_GTDB,
"VIRALDB": sig_VIRALDB,
"contaminant_X": sig_contaminant_x
}
# Define the order in which variables should be processed
processing_order = ["GTDB", "VIRALDB", "contaminant_X"]
# Consume non-reference k-mers and retrieve statistics
nonref_stats = qc.nonref_consume_from_vars(vars=variables_signatures, vars_order=processing_order)
print(nonref_stats)
# Output Example:
# {
# "GTDB non-genomic total k-mer abundance": 1500.0,
# "GTDB non-genomic coverage index": 0.2,
# "VIRALDB non-genomic total k-mer abundance": 3500.0,
# "VIRALDB non-genomic coverage index": 0.70,
# "contaminant_X non-genomic total k-mer abundance": 0.0,
# "contaminant_X non-genomic coverage index": 0.0,
# "non-var non-genomic total k-mer abundance": 100.0,
# "non-var non-genomic coverage index": 0.1
# }
Notes:
- **Variable Processing Order**:
The `vars_order` list determines the sequence in which variables are processed. This order is crucial
when there is potential overlap in k-mers between variables, as earlier variables in the list have
higher priority in consuming shared k-mers.
- **Non-Reference K-mers Definition**:
Non-reference k-mers are defined as those present in the sample signature but absent in the reference
signature. This method focuses on characterizing these unique k-mers relative to provided variables.
Source code in src/snipe/api/reference_QC.py
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 |
|
predict_coverage(extra_fold, n=30)
¶
Predict the coverage index if additional sequencing is performed.
This method estimates the potential increase in the genome coverage index when the sequencing depth is increased by a specified fold (extra sequencing). It does so by:
- Cumulative Coverage Calculation:
- Splitting the sample signature into
n
random parts to simulate incremental sequencing data. -
Calculating the cumulative coverage index and cumulative sequencing depth at each incremental step.
-
Saturation Curve Fitting:
- Modeling the relationship between cumulative coverage and cumulative sequencing depth using a hyperbolic saturation function.
-
The saturation model reflects how coverage approaches a maximum limit as sequencing depth increases.
-
Coverage Prediction:
- Using the fitted model to predict the coverage index at an increased sequencing depth (current depth
multiplied by
1 + extra_fold
).
Mathematical Explanation:
- Saturation Model: The coverage index \( C \) as a function of sequencing depth \( D \) is modeled using the function:
Where: - \( a \) and \( b \) are parameters estimated from the data. - \( D \) is the cumulative sequencing depth (total abundance). - \( C(D) \) is the cumulative coverage index at depth \( D \).
-
Parameter Estimation: The parameters \( a \) and \( b \) are determined by fitting the model to the observed cumulative coverage and depth data using non-linear least squares optimization.
-
Coverage Prediction: The predicted coverage index \( C_{\text{pred}} \) at an increased sequencing depth \( D_{\text{pred}} \) is calculated as:
Parameters:
-
extra_fold
(float):
The fold increase in sequencing depth to simulate. For example, extra_fold = 1.0 represents doubling the current sequencing depth. -
n
(int, optional):
The number of parts to split the sample signature into for modeling the saturation curve. Default is 30.
Returns:
- float
:
The predicted genome coverage index at the increased sequencing depth.
Raises:
- RuntimeError
:
If the saturation model fails to converge during curve fitting.
Usage Example:
# Create a ReferenceQC instance with sample and reference signatures
qc = ReferenceQC(sample_sig=sample_sig, reference_sig=reference_sig)
# Predict coverage index after increasing sequencing depth by 50%
predicted_coverage = qc.predict_coverage(extra_fold=0.5)
print(f"Predicted coverage index at 1.5x sequencing depth: {predicted_coverage:.4f}")
Implementation Details:
-
Splitting the Sample Signature:
- The sample signature is split into
n
random parts using a multinomial distribution based on k-mer abundances. - Each part represents an incremental addition of sequencing data.
- The sample signature is split into
-
Cumulative Calculations:
- At each incremental step, the cumulative signature is updated, and the cumulative coverage index and sequencing depth are calculated.
-
Curve Fitting:
- The
scipy.optimize.curve_fit
function is used to fit the saturation model to the cumulative data. - Initial parameter guesses are based on the observed data to aid convergence.
- The
Source code in src/snipe/api/reference_QC.py
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 |
|
split_sig_randomly(n)
¶
Split the sample signature into n
random parts based on abundances.
This method distributes the k-mers of the sample signature into n
parts using a multinomial distribution
based on their abundances. Each k-mer's abundance is split across the n
parts proportionally.
Mathematical Explanation:
For each k-mer with hash \( h \) and abundance \( a_h \), its abundance is distributed into \( n \) parts according to a multinomial distribution. Specifically, the abundance in each part \( i \) is given by:
Where: - \( a_{h,i} \) is the abundance of k-mer \( h \) in part \( i \). - Each \( a_{h,i} \) is a non-negative integer such that \( \sum_{i=1}^{n} a_{h,i} = a_h \).
Parameters:
n
(int
): Number of parts to split into.
Returns:
List[SnipeSig]
:
List ofSnipeSig
instances representing the split parts.
Usage Example:
split_sigs = qc.split_sig_randomly(n=3)
for idx, sig in enumerate(split_sigs, 1):
print(f"Signature part {idx}: {sig}")